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Electrical Resistivity of Liquid Metals 
in Regime of Short Mean Free Path 
A. FERRAZ and N. H. MARCH 
Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford, 

(Received Ocrober 2, 1978) 

Using the force-force correlation function formula for electrical resistivity, plus an approximate 
result of Bardeen for the effect of scattering on the off-diagonal elements of the density matrix, a 
self-consistent method of calculating the electronic mean free path in liquid metals is proposed. 

1 INTRODUCTION 

The weak scattering theory of the electrical resistivity p of simple liquid 
metals'B2 has been successful in dealing with long mean free path situations. 
One of its limitations is that the finite electronic mean free path corresponds 
to a blurring of the Fermi surface, and this is obviously not included when 
one writes3 

3n 514 S(k)lu(k)l' 4k3 dk, 
= f i j i p , ( 2 k / ) 4  0 

since the sharp Fermi surface assumption is clear from the limits of the 
momentum transfer integration. Here, as usual, uf is the Fermi velocity, pi 
is the mean ionic density, k, the Fermi wave number, S(k)  the liquid 
structure factor and u(k) the pseudopotential for a single screened ion. 

Though modifications of Eq. (1) have been proposed, no relaxation of the 
sharp Fermi surface condition appears to have been contemplated in the 
presence of a finite electronic mean free path 1. Therefore, there is a need for 
an internally consistent generalization of Eq. (1) in which the Fermi surface 
blurring is incorporated consistently with the finite mean free path which 
emerges from the calculation. 
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272 A. FERRAZ A N D  N. H. MARCH 

2 FORCE-FORCE CORRELATION FUNCTION AND FERMl 
SURFACE BLURRING 

To effect an approximate generalization of Eq. (l), we start from the force- 
force correlation function formula for electrical re~istivity.~.~ This reads, 
with F denoting the force-force correlation, 

where Vis the total scattering potential while u is the energy derivative of 
the Dirac density matrix evaluated at the Fermi energy E,,  If we write 

V(r) = ufr - Ri) (3) 
i 

for the ionic configuration R,, then inserting the freeelectron approximation 
uo for u in Eq. (2), namely 

the result (Eq. 1) follows after performing a liquid average. The essential 
step involved is to consider the convolution 

1 uo(rl - r,)) dr, 
ar2 

in Fourier transform (FT) which yields 

Using Eq. (4), apart from unimportant factors, one finds 

1 ro(k, k,) = - for k < 2k, k 

= 0 fork > 2k, (6)  

Evidently V(k) is the Fourier transform of the total scattering potential 
W). 

Now we have the hint we need to insert approximately the Fermi surface 
blurring. For it is clear that the cut-off in the Fourier transform of I uo 1 
at 2k, is directly related to part of the undamped oscillatory off-diagonal 
form (sin k,R/k,R)’ with R = Ir, - r2(,  at large distances R from the 
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LIQUID METAL RESISTIVITY 273 

diagonal. Since this can be rewritten as, apart from factors 

1 cos2kfR -- 
R2 R2 (7) 

it is clear that 1/R2 at large R comes directly from the l/k singularity of To 
at small k while cos 2kf R/R2 comes from the discontinuity at 2k, m To 
given by Eq. (6). Though it would seem, at first sight, that only the latter term 
in (7) is altered by Fermi surface blurring due to disorder scattering, in fact 
we shall see below that modifications can also occur at fairly small k. 

3 BARDEEN’S APPROXIMATION FOR OFF-DIAGONAL DENSITY 
MATRIX IN PRESENCE OF SCATTERING 

It is clear that to calculate a in Eq. (2) exactly for an arbitrary ionic array 
of potentials at Ri given by Eq. (3) is an impossible task. But Bardeen6 has 
given an approximate argument which we shall utilize in order that the 
effect of scattering, plus configurational averaging, is subsumed into the 
off-diagonal density matrix a(r lr2) by writing . 

o(r,r,E,) = ao(rlr2Ef)exp(~,):  R = lrl - r21 

where 1 is the electronic mean free path. Since this is at the heart of our 
proposal to generalize Eq. (1) to deal with short mean free paths, we give 
what is essentially Bardeen’s argument to motivate the choice of the approxi- 
mate form (Eq. 8) in the Appendix. It is now quite clear that the evaluation 
of the force-force correlation function F can be carried through precisely 
as in Section 2, except that To(k, k,) must be replaced by r(k, k,, I) given by 

T(k, k,, I) = ~eik.RIao(R)12e-R/’dR (9) 

R2 dR 
sin kR sin2 k, R 

kR (k,R)’ 

Clearly, because of the Bardeen damping factor e-R’l, the quantity 
T(k, k,, I) will no longer have a discontinuity at k = 2k, as depicted in 
Figure 1. Due to the linear term in R at small R in the Bardeen damping 
factor, it is easy to show that T(k, k,, I) falls of as k - 4  at large k, with ampli- 
tude proportional to Ill, and therefore decaying to zero in the sharp Fermi 
surface limit I -+ 03. The detailed form of r(k, k,, I) is obtained from the 
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one-dimensional integral 

A. FERRAZ AND N. H. MARCH 

sin k R  (1 - CQS 2 k r R )  R2 dR 
k R  R2 

2 2kl 
1 + 4(k,Q2 - (kQ2 

= - [arctg kl - iarctg 
7r3k 

where 6 is the step function. This reduces to the explicit form ro(k, k,) of 
Eq. (6) in the limit I + 00. 

Carrying the argument further, as in the nearly free electron theory, we 
reach the desired result, with p, the Fermi momentum, 

with the appropriate constants included now in r. Equation (12) is the basic 
result of the present proposal €or dealing with Fermi surface blurring. It 
must be solved iteratively to get a self-consistent value for the electrical 
resistivity p. 

Of course, if we insert To for r, then we regain pnre of Eq. (1). Suppose 
the corresponding mean free path is I,. Then one can insert this in Eq. (10) 
and hence the right-hand side of Eq. (12) to obtain a new estimate of the 
resistivity, say pi .  Provided in the iteration the same input data is used for 
S(k) and u(k) at each stage, then it is readily shown that pI < Pnfc. From pl, 
a new free path, I, say, results which can be used in Eq. ( l o ) ,  and subsequently 
in the right-hand side of Eq. (12). Since I, is greater than I,, the new approxi- 
mation for the resistivity, p z  say, is greater than pl, though less than p o  . Thus 
a convergent scheme results. 

Naturally, it would never make sense physically if the mean free path I 
became less than the average interionic spacing. 

We must caution that the above argument assumed that the same 
input information, i.e. the same S(k)  and v(k), was used at every stage of the 
iteration. As far as the structure factor S(k) is concerned, one would use the 
measured values, and no problem would then arise. But for a given bare-ion 
pseudopotential, the screening would be done with a dielectric function 
E(k). This is usually taken to have a kink at 2k,  ; for example from the Lind- 
hard dielectric function and its refinements.' In fact, this function will depend 
on the mean free path, and this problem is currently being considered. 
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LIQUID METAL RESISTIVITY 275 

4 STATUS OF THE FORCE-FORCE CORRELATION FUNCTION 

Since there has been some discussion of the status of formula for p in terms 
of F in Eq. (2), as in the review by March8 we conclude by clarifying this point. 
It is clear from the work of Edwardsg that for weak scatterers distributed 
randomly, the usual Boltzmann formula comes back from the form of the 
Kubo-Greenwood formula involving the momentum matrix elements. Thus 
the formula F in Eq. (2) of Rousseau, Stoddart and March4 is the form directly 
comparable to the above form of the Kubo-Greenwood formula, which is 
known to be valid for the extended states appropriate to the liquid metal 
problem. 

However, there is an alternative form of the Kubo-Greenwood formula, 
in terms of position rather than momentum matrix elements, which is 
appropriate to localized states. Here, the form of Eq. (2) is inappropriate. 
One must return to the discussion of Edwards” and include his denominator 
to yield a form 

N 
p = -  

1 + D  (13) 

where the numerator is essentially Eq. (2) as before, but where, in the denomi- 
nator, D is proportional to 

For extended states D = 0.4 However, in the localized states case, the answer 
is insensitive to boundary conditions, and it can be shown that both N and 
1 + D in Eq. (13) are zero for “box” boundary conditions. Though this 
result appears strange, it is clear that if one resolves the indeterminacy by, 
say, using L’Hopital’s rule, one must find that the denominator goes more 
strongly to zero than the numerator, yielding correctly p tends to infinity 
for localized states. 

5 SUMMARY 

The basic result of the paper is Eq. (12) which must be solved self-consistently 
for the electronic mean free path. This equation reduces to the nearly free 
electron formula for the electrical resistivity of liquid metals when the mean 
free path tends to infinity on the right-hand side of this equation. Provided 
the same input, i.e. the same S(k) and v(k) is used as in the nearly free electron 
case, the resistivity is lowered relative to the nearly free electron result. 
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216 A. FERRAZ AND N. H. MARCH 

FIGURE 1 
r,, defined by Eq. (6) and plotted in continuous curve, with k, appropriate to Pb. 

corresponds to the dotted curve. 

Shows effect of finite mean free path, i.e. Fermi surface blurring, on the function 

The Fermi surface blurring is small for the k, and the measured mean free path of Li, which 

Substantial blurring occurs for Hg, as shown by the dashed curve. 

However, the dielectric function is in fact altered by the finite mean free path, 
and hence u(k) becomes also dependent on the free path. This problem is 
under consideration, and it is intended to present numerical results of the 
effect of Fermi surface blurring at a later stage. However, the results in 
Figure 1 of this paper show the nature of the corrections that are thereby 
incorporated into the resistivity theory. 

Appendix 

Since it is not possible to calculate exactly the Dirac density matrix for elec- 
trons scattered by a distribution of ionic potentials in a liquid metal com- 
patible with the observed short-range order, the argument of Bardeed is 
very useful in motivating the basic assumption (Eq. 8). He supposes that all 
the scattering centres in his model are distributed randomly in a slab of 
width A, as shown in Figure Al .  Thus, outside the slab, the electron wave 
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LIQUID METAL RESISTIVITY 277 

- A  
I 

R F 2 
FIGURE A1 Shows Bardeen’s model for electron scattering by a random distribution of ions 
enclosed within a slab of width A. I, R and T denote incident, reflected and transmitted beams 
respectively. Regions marked 1 and 2 are referred to in the text. 

functions are plane waves since there are no scattering centres in this region 
in the Bardeen model. Hence, using simple scattering theory and assuming 
that the scattering is incoherent, the first-order Dirac density matrix p(rl, rz) 
with rl and rz outside the slab, can be determined exactly. 

The wave function of one electron hitting the slab from the left, in region 
1, is given by 

where the cosine is a normalization factor. The transmitted electron wave 
function, in region 2, is 

Similarly, for one electron entering the slab from the right, the wave function 
in region 2 is 

and the scattered wave to the left of the slab is 
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278 A. FERRAZ AND N. H. MARCH 

Assuming that the phases of the scattered waves add randomly, the Dirac 
density matrix p(rl, rz) with, say, r l  on the left and r2 on the right of the slab 
is 

p(rl, rz) = C +:(rz)ijk(rl) = 1 qteik.(’L-’2) (A51 
1k1 < f j  lkl<kf 

where T2k is the probability that the electron passes through the slab without 
being scattered by any of the ions. However, if the distance that the electron 
moves is R this probability is simply e-R’’ where 1 is the electronic mean free 
path. Therefore the off-diagonal terms of the Dirac density matrix are reduced 
by a factor e-R/21 ,  where R = Ir, - rzI, due to disorder scattering. Hence 
the energy derivative of p(rl, rz) has also the approximate form given by 
Eq. (8). 
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